DS n°4 CINÉTIQUE – CHIMIE ORGANIQUE

Problème n°1: Décomposition du pentoxyde d'azote

La réaction macroscopique de décomposition du pentoxyde d'azote (N₂O₅) est la suivante :

$$N_2O_{5(g)} = 2 NO_{2(g)} + +1/2 O_{2(g)}$$

La cinétique de la réaction peu être suivi par spectroscopie infrarouge permettant de mesurer la concentration en N_2O_5 en fonction du temps. Une étude expérimentale menée à température et pression constantes a conduit aux résultats suivants :

- Lorsque l'on part d'un mélange d'argon Ar (99 %) et de N₂O₅ (1 %), on observe que la vitesse globale de la réaction suit une cinétique d'ordre 1 par rapport à la concentration en N₂O₅.
- Lorsque l'on part de N₂O₅ pur, la vitesse initiale de la réaction suit une cinétique d'ordre 2.

On a proposé le mécanisme suivant, où M représente une molécule quelconque du milieu réactionnel :

$$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$$
 constante de vitesse k_1
 $NO_2 + NO_3 \rightarrow N_2O_5$ constante de vitesse k_2
 $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$ constante de vitesse k_2
 $N_2O_5 + NO \rightarrow 3 NO_2$ constante de vitesse k_3

- 1. En appliquant l'approximation de l'état quasi stationnaire aux intermédiaires réactionnels, établir l'expression de la vitesse de formation de NO_2 en fonction des différentes constantes de vitesse, de [M] et de $[N_2O_5]$.
- **2.** Donner l'expression de la constante de vitesse globale *k*.

On donne les facteurs de fréquence et les énergies d'activation des constantes de vitesse k_{-1} et k_2 :

$$A_{-1} \approx A_2 \approx 3.10^9 \text{ mol}^{\text{x}}.\text{L}^{\text{y}}.\text{s}^{-1}$$

 $E_{a-1} = 12 \text{ kJ} \cdot \text{mol}^{-1} \text{ et } E_{a2} = 87 \text{ kJ} \cdot \text{mol}^{-1}.$

- **3.** Préciser l'unité de A_{-1} et A_2 .
- **4.** Calculer le rapport des constantes de vitesse k_{-1} et k_2 à la température T de 1000 K. Que peut-on en conclure ?
- **5.** Calculer alors l'énergie d'activation E_a du processus global sachant que $E_{a1} = 51 \text{ kJ} \cdot \text{mol}^{-1}$.
- **6.** Montrer que la loi de vitesse obtenue à partir de ce mécanisme permet d'expliquer les résultats expérimentaux décrits en introduction.
- 7. Proposer une explication au fait qu'en partant de NO₂ pur, l'expression proposée n'est valable qu'initialement.

Données:

$$R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

Problème n°2 : Synthèse de la juvabione

On s'intéresse aux dernières étapes de la synthèse de la juvabione par le groupe de J. Ficini (1974).

Quand il est demandé de représenter une molécule, celle-ci doit être représentée en entier et en tenant compte de la stéréochimie.

En revanche, il est possible de simplifier à bon escient les molécules lors de l'écriture des mécanismes.

Étape $A \rightarrow B$

- 1. Proposer un réactif pour effectuer la transformation de A en B et nommer cette réaction.
- 2. Indiquer les conditions opératoires pour effectuer la réaction $A \to B$ avec un bon rendement et une bonne cinétique.
- 3. Écrire le mécanisme de cette transformation.

Étape $B \rightarrow C$

4. À quel type de réaction appartient la transformation de B en C. Représenter C.

C est transformé en **D** par une suite d'étapes qui ne sont pas étudiées. Cette suite d'étapes permet de fixer une chaîne carbonée -COOCH₃ en α de la fonction cétone (c'est à dire sur le carbone lié à C=O).

Étape D \rightarrow **E**

- 5. À quel type de réaction appartient la transformation de D en E. Proposer des réactifs permettant cette transformation.
- **6.** Écrire le mécanisme de cette transformation.

Étape $E \rightarrow F$

- 7. Identifier le produit intermédiaire lors de la transformation de E en F.
- 8. Nommer l'ion CH₃O⁻. Proposer une méthode de préparation de cet ion.
- 9. La cinétique de la 2° étape dépend de la concentration en CH₃O⁻. Proposer un mécanisme pour la 2° étape.
- 10. Quel est le rôle de la première étape ? Quel est le rôle de la pyridine ? Écrire l'équation-bilan de la première étape.
- 11. Nommer et commenter la sélectivité de la deuxième étape en représentant le sous-produit isomère F' susceptible d'être obtenu en plus de F.

Étape $F \rightarrow juvabione$

- 12. Proposer des conditions opératoires pour cette étape.
- **13.** Le spectre infrarouge de la juvabione fait apparaître trois bandes caractéristiques à 1715 cm⁻¹, 1705 cm⁻¹ et 1642 cm⁻¹. Les attribuer.

Le spectre RMN ¹H de la juvabione donne les signaux suivants :

	δ (ppm)	intégration	multiplicité	J (Hz)
H_a	0,88	3	doublet	6,6
H_b	0,92	6	doublet	7,0
H _c	1,1 à 2,8	13	massif	
H_{d}	3,72	3	singulet	
H _e	6,95	1	doublet de doublets 6,7 et 5,5	

- 14. Attribuer les signaux a, b, d et e, en justifiant en particulier la multiplicité de chaque signal.
- 15. En tenant compte des valeurs des constantes de couplage, schématiser l'allure du signal de H_e, en supposant que le spectromètre RMN a une résolution telle qu'il n'y a pas de chevauchements des pics.

Bilan de la synthèse

Ces dernières étapes de la synthèse ont mis en jeu une étape de protection puis de déprotection.

- 16. Repérer chacune de ces deux étapes.
- 17. Expliquer l'intérêt de la protection dans cette synthèse.
- **18.** Est-il possible d'intervertir les étapes $A \rightarrow B$ et $B \rightarrow C$?

Données:

Nombre d'ondes de certaines vibrations d'élongation (en cm⁻¹) :

liaison	C=O ester	C=O ester conjugué	C=O cétone	C=O cétone conjuguée	C=O acide carboxylique	C=O acide carboxylique conjugué	C=C alcène
σ (cm ⁻¹)	1730-1750	1715-1730	1705-1725	1665-1685	1700-1725	1690-1715	1620-1690